AP Stats: Simulation by Programming
September 7, 2020
Table of Contents
Poster
Code
import random
import csv
import codecs
import matplotlib.pyplot as plt
plt.style.use('ggplot')
plt.rcParams['savefig.dpi'] = 100 #图片像素
plt.rcParams['figure.dpi'] = 100 #分辨率
scale = 10000000
num1 = num2 = num3 = 0
customer = []
yogurt = []
pos1 = []
pos2 = []
pos3 = []
for i in range(0,scale):
temp = random.randint(0,100)
if(temp <= 38): num1 = num1 + 1
elif(temp <= 80): num2 = num2 + 1
else: num3 = num3 + 1
customer.append(temp)
pos1.append(float(num1)/(i+1))
pos2.append(float(num2)/(i+1))
pos3.append(float(num3)/(i+1))
# print(pos1[9999])
# with open("data.csv","w") as csvfile:
# writer = csv.writer(csvfile)
#先写入columns_name
# writer.writerow(["num","customer","type","pos1","pos2","pos3"])
# #写入多行用writerows
# for i in range(0,scale):
# writer.writerow([i, customer[i], pos1[i], pos2[i], pos3[i]])
# print("保存文件成功,处理结束")
# print(len(customer))
for i in range(0,scale):
temp = customer[i]
if(temp <= 38): customer[i] = "chocolate"
elif(temp <= 80): customer[i] = "vanilla"
else: customer[i] = "strawberry"
# for i in customer:
print(pos1[len(pos1)-1])
print(pos2[len(pos2)-1])
print(pos3[len(pos3)-1])
plt.figure()
plt.subplot(2,2,1)
plt.xlabel('Until the nth customer')
plt.ylabel('Possibility')
plt.plot(range(0,scale), pos1, label="chocolate")
plt.plot(range(0,scale), pos2, label="vanilla")
plt.plot(range(0,scale), pos3, label="strawberry")
plt.legend()
plt.subplot(2,2,2)
plt.xlabel('Flavor')
plt.ylabel('Number of the customer')
list0 = [num1,num2,num3]
list1 = [scale*0.38, scale*0.42, scale*0.2]
y = ["chocolate","vanilla","strawberry"]
x = list(range(len(y)))
total_width, n = 0.8, 4
width = total_width / n
plt.bar(x, list0, width=width, label='Actual', tick_label=y, fc='y')
for i in range(len(x)):
x[i] = x[i] + width
plt.bar(x, list1, width=width, label='Predicted', fc='r')
plt.legend()
plt.subplot(2,2,3)
labels = ["chocolate","vanilla","strawberry"] # 各部分标签
sizes = [pos1[len(pos1)-1], pos2[len(pos2)-1], pos3[len(pos3)-1]] # 各部分大小
colors = ['yellowgreen','lightskyblue','yellow']
explode = (0,0,0) #将某一块分割出来,值越大分割出的间隙越大
patches,text1,text2 = plt.pie(sizes,
explode=explode,
labels=labels,
colors=colors,
labeldistance = 1.2,#图例距圆心半径倍距离
autopct = '%3.2f%%', #数值保留固定小数位
shadow = False, #无阴影设置
startangle =90, #逆时针起始角度设置
pctdistance = 0.6) #数值距圆心半径倍数距离
#patches饼图的返回值,texts1饼图外label的文本,texts2饼图内部文本
# x,y轴刻度设置一致,保证饼图为圆形
plt.axis('equal')
plt.legend()
plt.subplot(2,2,4)
plt.xlabel('The nth customer')
plt.ylabel('Flavor')
plt.plot(range(0,scale), customer)
plt.show()
import random
import csv
import codecs
import matplotlib.pyplot as plt
ans1 = []
ans2 = []
ans3 = []
def process(x):
random.seed(x)
plt.style.use('ggplot')
plt.rcParams['savefig.dpi'] = 100 #图片像素
plt.rcParams['figure.dpi'] = 100 #分辨率
scale = 10000
num1 = num2 = num3 = 0
customer = []
yogurt = []
pos1 = []
pos2 = []
pos3 = []
for i in range(0,scale):
temp = random.randint(0,100)
if(temp <= 38): num1 = num1 + 1
elif(temp <= 80): num2 = num2 + 1
else: num3 = num3 + 1
customer.append(temp)
pos1.append(float(num1)/(i+1))
pos2.append(float(num2)/(i+1))
pos3.append(float(num3)/(i+1))
# print(pos1[9999])
# with open("data.csv","w") as csvfile:
# writer = csv.writer(csvfile)
#先写入columns_name
# writer.writerow(["num","customer","type","pos1","pos2","pos3"])
# #写入多行用writerows
# for i in range(0,scale):
# writer.writerow([i, customer[i], pos1[i], pos2[i], pos3[i]])
# print("保存文件成功,处理结束")
# print(len(customer))
for i in range(0,scale):
temp = customer[i]
if(temp <= 38): customer[i] = "chocolate"
elif(temp <= 80): customer[i] = "vanilla"
else: customer[i] = "strawberry"
# for i in customer:
# print(pos1[len(pos1)-1])
# print(pos2[len(pos2)-1])
# print(pos3[len(pos3)-1])
ans1.append(pos1[len(pos1)-1])
ans2.append(pos2[len(pos2)-1])
ans3.append(pos3[len(pos3)-1])
for i in range(0,200):
process(i)
plt.figure()
plt.xlabel('Randem.seed(n)')
plt.ylabel('Possibility')
plt.plot(range(0,200), ans1, label="chocolate")
plt.plot(range(0,200), ans2, label="vanilla")
plt.plot(range(0,200), ans3, label="strawberry")
plt.legend()
plt.show()