树形DP
January 29, 2019
Table of Contents
二叉苹果树
思路
- $dp[u][j表示节点u留下j条边的最大价值,每一次决策只有三种情况:剪左子树,剪右子树,两个都不剪
- 剪左边:dp[u][j]=dp[rson][j−1]+v[rson]dp[u][j]=dp[rson][j−1]+v[rson],同理,剪右边:dp[u][j]=dp[lson][j−1]+v[lson]dp[u][j]=dp[lson][j−1]+v[lson]
- 两边都不剪:dp[u][j]=dp[lson][j]+dp[rson][k−j−2]dp[u][j]=dp[lson][j]+dp[rson][k−j−2]
代码:记忆化搜索
int f[N][N];
bool t[N][N];
int dp(int u,int k)
{
if(t[u][k]) return f[u][k];
t[u][k]=1;
if(!k) return f[u][k]=0;
int tmp1=dp(lson[u],k-1)+v[sonl[u]];
int tmp2=dp(rson[u],k-1)+v[sonr[u]];
int tmp3=0;
for(int l=0;l<k-2;l++)
tmp3=max(tmp3,dp(lson[u],l)+dp(rson[u],k-l-2));
return f[u][k]=max(tmp1,max(tmp2,tmp3+lson[u]+rson[u]));
}
先修课
题目
课的先修关系形成一棵树的结构,每门课有一门或者没有先修课。选M门课,能获得的最大学分是多少?
思路
- dp[u][j]dp[u][j]以u为根的子树选j门课
- 把j-1门课分配给子树,就是一个背包?
- 然后我们用f[i][j]f[i][j]表示当前树中,前i棵子树选择j门课的最大学分。这样就能够通过f算出dp[i][j]dp[i][j],相当于树上DP套背包。对于每一个状态dp[i][j]dp[i][j]都需要用f算出学分分配的最佳方案
K-set
题目
在一棵树中选出最多的点,使得这些点中每个点最多与其他点连了k条边
思路
dp[u][0/1][0/1]dp[u][0/1][0/1]表示以u为父亲,取/不取父亲,取/不取自己的最大值
dp[u][0][0]dp[u][0][0]:自己和父亲都不取,u的儿子随便取。$f[u][0][0]=size∑i=1max( dp(vi,0,0) , dp(vi,0,1) )f[u][0][0]=∑i=1sizemax( dp(vi,0,0) , dp(vi,0,1) )$
dp[u][1][0]dp[u][1][0]:父亲要取,u自己不取,u的儿子同样随便取。f[u][1][0]=f[u][0][0]f[u][1][0]=f[u][0][0]
dp[u][1][1]dp[u][1][1]
:父亲要取,自己也要取,儿子取k-1条边。
这时我们就要考虑取哪几条边,也就是哪几个点。
对于任意一个u的儿子vivi,如果取这个点,那么它的贡献就是dp(vi,1,1)dp(vi,1,1),如果不取这个点,那么它的贡献就是dp(vi,1,0)dp(vi,1,0)
因此这个点取或者不取,带来的贡献就是两种情况的差,所以我们只要按两种情况的差从大到小排序就好了。最后选取差值最大的k-1个点就OK了(前提是这k-1个点带来的贡献都是正的,如果有负贡献那么就取不满k-1个点)
dp[u][0][1]dp[u][0][1]:父亲不取,自己要取,儿子取k条边